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Abstract

Motivation: Detection of RNA-binding proteins (RBPs) is essential since the RNA-binding proteins

play critical roles in post-transcriptional regulation and have diverse roles in various biological

processes. Moreover, identifying RBPs by computational prediction is much more efficient than ex-

perimental methods and may have guiding significance on the experiment design.

Results: In this study, we present the RBPPred (an RNA-binding protein predictor), a new method

based on the support vector machine, to predict whether a protein binds RNAs, based on a com-

prehensive feature representation. By integrating the physicochemical properties with the evolu-

tionary information of protein sequences, the new approach RBPPred performed much better than

state-of-the-art methods. The results show that RBPPred correctly predicted 83% of 2780 RBPs and

96% out of 7093 non-RBPs with MCC of 0.808 using the 10-fold cross validation. Furthermore, we

achieved a sensitivity of 84%, specificity of 97% and MCC of 0.788 on the testing set of human

proteome. In addition we tested the capability of RBPPred to identify new RBPs, which further con-

firmed the practicability and predictability of the method.

Availability and Implementation: RBPPred program can be accessed at: http://rnabinding.com/

RBPPred.html.

Contact: liushiyong@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

RNA-binding proteins (RBPs) are proteins that bind to the mRNA

or non-coding RNA. In cell, the RBP and RNA can form an RNA–

protein complex, which plays an important role in many biolo-

gical processes, such as posttranscriptional gene regulation, alterna-

tive splicing and translation. RBPs interact with tens of thousands of

all kinds of RNAs, such as the mRNA (Baltz et al., 2012; Beckmann

et al., 2015; Castello et al., 2012; Kwon et al., 2013), long

noncoding RNA and tRNA. Recently, high-throughput experimen-

tal techniques are developed to identify numerous RBPs, which in-

clude 860 RBPs in human HeLa cells (Castello et al., 2012), 797

RBPs in human embryonic kidney cell line (Baltz et al., 2012), 555

mRNA-binding proteins from mouse embryonic stem cells

(Kwon et al., 2013) and 120 RBPs from S. cerevisiae cells (Mitchell

et al., 2013). Despite great efforts to experimentally capture

RBPs, we still have an incomplete understanding of how many

RBPs exist in all species. Computational prediction approaches

are therefore urgent and essential to build an RBP repertoire and

RNA-RBP interaction network. As far as we know, there are several

computational approaches available predicting RBPs as listed in

Table 1. Especially, several SVM-based approaches are developed

for RNA-binding proteins prediction (Cai et al., 2003; Cai and Lin,

2003; Han et al., 2004; Kumar et al., 2011; Shao et al., 2009;

Shazman and Mandel-Gutfreund, 2008; Spriggs et al., 2009; Yu

et al., 2006). Approaches vary in the features employed in those

studies, which include the amino acid composition, hydrophobicity,

charge, predicted secondary structure and solvent accessible area of

residues.
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In 2011, Kumar et al. (2011) firstly applied evolutional informa-

tion in the form of position specific scoring matrix (PSSM) to RNA-

binding proteins prediction. A SVM-based approach RNApred was

developed with a best MCC of 0.62 based on the PSSM-400 on a

non-redundant set of 377 RBPs and 377 non-RBPs. Different from

the SVM methods, Zhao et al. proposed two template-based

approaches for predicting RBPs. One is a structure-based method

SPOT-stru (Zhao et al., 2011a,b) and the other is a sequence-based

method SPOT-seq (Zhao et al., 2011a,b). In SPOT-stru they com-

bined relative structural similarity in the form of Z-score and a stat-

istical energy function DFIRE to predict RBPs. The results show that

the combination of Z-score and DFIRE energy function achieved the

best performance with MCC of 0.57 on the benchmark of 212

RNA-binding domains and 6761 non-RNA binding domains.

Different from the structure-based SPOT-stru, SPOT-seq employed

the fold recognition between the target sequence and template struc-

tures using the defined sequence-structure matching score. As re-

ported, it achieved a MCC of 0.62 for RBP prediction on a set of

215 RBP chains and 5765 non-binding proteins.

Recently, another three approaches are developed for RBPs pre-

diction, (Ma et al., 2015a,b; Paz et al., 2016). The two methods pro-

posed by Ma et al. differ in the features used to train the random

forest model for predicting. One (Ma et al., 2015a,b) encodes the

EIPP and amino acid composition for the protein sequence, while

the other (Ma et al., 2015a,b) employs features of a different EIPP

property, conjoint triad, binding and non-binding propensity. In Ma

et al.’s work, the evolutionary information in the form of PSSM was

combined with 6 physicochemical properties to form a new vector

named EIPP with 120 dimension. BindUP (Paz et al., 2016) is a

structure-based approach, available through a web server for pre-

dicting RBP for a given protein structure or structural model using

the SVM classifier. Based on the electrostatic features of protein sur-

face and other properties, sensitivity of 0.71, specificity of 0.96 are

achieved on an independent testing set of 323 structures of DNA

and RNA binding proteins and a control set of an equal number ex-

tracted from PDB.

As pointed out in SPOT-stru (Zhao et al., 2011a,b), earlier stud-

ies did not eliminate the homologous proteins in the training or test-

ing set (Cai et al., 2003; Cai and Lin, 2003; Han et al., 2004) and

the performance was not evaluated using the unbiased measurement

of the area under the receiver operating characteristic curve (AUC)

or Matthews correlation coefficient (MCC) (Cai et al., 2003; Cai

and Lin, 2003; Han et al., 2004; Yu et al., 2006). Moreover, SVM

model were trained or tested on more or less equal number of RNA-

binding and non-binding proteins (Kumar et al., 2011; Peng et al.,

2011; Shao et al., 2009; Spriggs et al., 2009; Yu et al., 2006), which

was inconsistent with the real-word simulation where the propor-

tion of discovered RBPs was just a very small fraction of all the pro-

teins (UniProt, 2008). However, the templated-based approaches

often performed worse in identifying novel RBPs with low sensitivity

since they were based on the homology or similarity between the tar-

get protein and the template. Moreover, analysis of the numerous

experimentally identified RBPs showed that, 402 of 860 HeLa

mRNA-binding proteins (47%) (Castello et al., 2012) lacked known

RNA-binding motifs and 216 of the 555 mRNA-binding proteins

(39%) (Kwon et al., 2013) lacked known RNA-binding domains.

About 39–47% RBPs without known RNA-binding domains imply

that they could be missed by sequence homology search tools

(Gerstberger et al., 2014; Ghosh and Sowdhamini, 2016) or an

RNA-binding domain-based RBP prediction algorithm (Zhao et al.,

2014).

In the present work, we proposed a computational approach

named RBPPred (an RNA-binding protein predictor) motivated by

the previous studies (Kumar et al., 2011; Wang et al., 2013; Yu

et al., 2006). By combing important features used in the three work,

we employed more significant features for RBPs prediction. The im-

portant features include hydrophobicity, polarity, normalized van

der Waals volume, polarizability, predicted secondary structure,

Table 1. Methods for RNA-binding proteins prediction

Method Means of

classification

Level Properties Availability

NAbind (Shazman and

Mandel-Gutfreund, 2008)

SVM–Gist Structure-based Patch size, patch surface access-

ibly, percent hydrogen bond in

patch, protein surface accessi-

bility, dipole, quadrupole mo-

ment, the molecular weight,

the size of the largest clefts,

number of atoms in the nega-

tive patch and so on

http://journals.plos.org/ploscompbiol/article/

file?id=info%3Adoi/10.1371/journal.pcbi.

1000146.s002&type=supplementary

RNApred (Kumar et al., 2011) SVM–SVMlight Sequence-based the amino acid, dipeptide, four-

part amino acid compositions,

predicted binding residues by

PPRINT and PSSM

http://www.imtech.res.in/raghava/rnapred/

SPOT-stru (Zhao et al., 2011a,b) Template-based Structure-based The combination of structural

alignment and binding affinity

http://sparks-lab.org/pmwiki/download/

index.php

SPOT-seq (Zhao et al., 2011a,b) Template-based Sequence-based Sequence-structure match and

binding affinity

http://sparks-lab.org/pmwiki/

download/index.php

SPalign (Yang et al., 2012) Template-based Structure-based Structure alignment http://sparks-lab.org/pmwiki/

download/index.php

BindUP (Paz et al., 2016) SVM–Gist Structure-based The same as NAbind http://bindup.technion.ac.il/

*Only the available approaches are listed here, accessed through a web server or program for downloading. Other unavailable RBPs prediction methods in-

clude: Cai et al. (2003), SVMProt (Han et al., 2004), Yu et al. (2006), Ahmad et al. (Ahmad and Sarai, 2011), Shao et al. (2009), Spriggs et al. (2009), Peng et al.

(Peng et al., 2011), PRBP (Ma et al., 2015a,b) and Ma et al. (2015a,b). Gist and SVMlightare the chosen tools for SVM classification in corresponding work.
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predicted solvent accessibility, side chain’s charge and polarity in

protein-RNA interaction and the PSSM profile of the protein se-

quence. The SVM classifier was chosen to distinguish the RBPs from

non-RBPs based on the trained model and tested on independent

testing sets.

2 Methods

2.1 Datasets
2.1.1 Training set

To develop and evaluate the PBPPred method, we constructed a

non-redundant training set of RBPs and non-RBPs. The flow chart

of building our training set was described in Figure 1. By using the

GO term ‘RNA binding’ to search the UniProt database (Apweiler

et al., 2004), we obtained 68084 reviewed RBP chains. For non-

RBPs, we adopted the construction method from the approach

SPOT-stru (Zhao et al., 2011a,b), by using PISCES (Wang and

Dunbrack, 2003) with sequence identity of 25%, sequence length

between 50 and 10 000 amino acids and resolution of X-ray better

than 3.0 Å. As a result, 14 389 chains were picked out. Protein

chains with the PDB records of ‘ribosomal’, ‘RNA’, ‘Nucleoprotein’,

’unknown function’, ‘uncharacterized’, or ‘hypothetical’ in the title

were removed. This generated 12790 protein sequences, which were

regarded as non-RBPs.

Afterwards, the RBPs and non-RBPs were mixed to remove the

redundant sequences with sequence identity cutoff�25% using the

psi-cd-hit program in the CD-HIT package (Li and Godzik, 2006).

Hence, we obtained 2878 RBPs and 7098 non-RBPs. To keep con-

sistent with the protein length in the non-RBPs dataset, the proteins

with length less than 50 or more than 10 000 amino acids in the

RBPs set were discarded. Meanwhile, proteins with the title

‘Fragment’ were also abandoned from the RBPs dataset. After that,

2782 RBPs remained.

Figure 1 shows the flow chart of the construction of the training

set which finally includes 2780 RBPs and 7093 non-RBPs. 2 RBPs

and 5 non-RBPs were removed since no secondary structure or evo-

lutionary information results were generated from the programs for

secondary structure prediction or evolutionary information

searching.

2.1.2 Independent testing set

The RBPPred was tested on 3 species, human and other two model

organisms, Saccharomyces cerevisiae (S. cerevisiae) and Arabidopsis

thaliana (A. thaliana).

Retrieval with the GO term ‘RNA binding’ to search UniProt,

we collected 1551, 560 and 603 RBPs for human, S. cerevisiae and

A. thaliana respectively. For the negative samples, we extracted the

non-RBPs belonging to the three species from PISCES (Wang and

Dunbrack, 2003) by searching a different version of PDB, which

formed three non-redundant negative sets, including1350 non-RBPs

of human, 395 non-RBPs of S. cerevisiae and 102 of A. thaliana

proteomes, respectively.

Some proteins were removed due to the same deletion reason

with the training set, that is, no secondary structure or evolutionary

information results were generated for these proteins. Moreover, in

order to test objectively, the same sequences between each of the

three testing sets and training set were deleted. Three independent

testing sets were eventually constructed, which contained 967 RBPs

and 597 non-RBPs for human, 354 RBPs and 135 non-RBPs for S.

cerevisiae, 456 RBPs and 37 non-RBPs for A. thaliana, respectively.

2.2 Sequence feature and vector encoding
The construction of the feature vector for each protein sequence was

based on the amino acids composition and evolutionary information

of the primary sequence. We encoded eight properties with a vector

of 576 dimension to represent a protein sequence, as shown in

Figure 2. The dimension of each feature group was also listed in

Supplementary Table S1 (See Supplemental Material). Five vectors

with 21 dimension representing the properties of hydrophobicity,

predicted secondary structure, normalized van der Waals volume,

polarity and polarizability, respectively, a 7 dimensional vector indi-

cating solvent accessibility, a 64 dimensional vector indicating

Fig. 2. Procedure of encoding the protein sequences into feature vectors. For

secondary structure, SSPro was used to predict the secondary structure in

the form of ‘C’, ‘E’ and ‘H’. For relative solvent accessibility, ACCPro was used

to present the solvent accessibility in the form of ‘e’ and ‘-’. For the five prop-

erties of hydrophobicity, polarity, normalized van der Waals volume, polariz-

ability and predicted secondary structure, the global protein sequence

descriptors (C-T-D) was employed to encode each feature vector with 21 di-

mension (v1, v2, v3, v4,. . ., v21). For predicted solvent accessibility, C-T-D

was applied to encode a feature vector of 7 dimension (v1, v2, v3, v4,. . ., v7).

According to charge and polarity of side chain, the protein sequence was

encoded to a vector of 64 dimension (v1, v2, v3, v4,. . ., v64) through the con-

joint triad encoding method. The sequence’s PSSM profile obtained by PSI-

BLAST was encoded to a 400 dimensional vector (v1, v2, v3, v4,. . ., v400) by

PSSM-400 approach

Fig. 1. The flowchart of building training set. The initial RBPs collection of

68084 reviewed RBPs was obtained by using ‘GO: 0003723 (RNA binding)’ to

search the UniProt database. The initial collection of 12790 non-RBPs was

retrieved through using the PISCES tool to cut protein sequences from PDB

and removing those proteins with unknown function or related to RNA bind-

ing. The redundancy between the proteins of the initial 68084 RBPs and

12790 non-RBPs was removed by using the CD-HIT tool with sequence iden-

tity cutoff of 25%, which generated the non-redundant collections of 2878

RBPs and 7098 non-RBPs. To keep the length consistency with the proteins in

the collection of non-RBPs, some proteins were deleted from the non-redun-

dant set of RBPs, which resulted in a set of 2782 RBPs. When using SSPro to

predict the secondary structure, ACCPro to predict solvent accessibility

(Magnan and Baldi, 2014) or PSI-BLAST to generate PSSM (Altschul et al.,

1997) for the non-redundant 2782 RBPs and 7098 non-RBPs, we found that

there were no results output for some proteins. So we discarded these pro-

teins and the remaining 2780 RBPs and 7093 non-RBPs constituted the final

non-redundant training set
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charge and polarity of side chain and evolutionary information with

a vector of 400 dimension are encoded for each protein sequence.

2.2.1 Physicochemical properties

For an example protein sequence displayed in Figure 2, we used the

global composition feature encoding method (composition, transi-

tion and distribution, i.e. C-T-D) to encode the properties of hydro-

phobicity, polarity, normalized van der Waals volume,

polarizability, predicted secondary structure and solvent accessibil-

ity, which we adopted from (Han et al., 2004). The global protein

sequence descriptors (C-T-D) was firstly proposed to describe global

composition of amino acid sequence in protein folding class predic-

tion (Dubchak et al., 1995).

In the method, the first index C describes the percent compos-

ition of each group in the protein sequence. Meanwhile, the second

descriptor T represents the transition probability between two con-

tiguous amino acids belonging to two different groups. Last but not

the least, the distribution of amino acid (the position of the first,

25%, 50%, 75% and the last amino acid) of each group along the

sequence is expressed by the third descriptor D. 20 amino acids were

classified into 3 groups (Dubchak et al., 1999) according to their

hydrophobicity, normalized van der Waals volume, polarity, polar-

izability. For the predicted secondary structure and solvent accessi-

bility, we employed the SSpro and ACCpro program (Magnan and

Baldi, 2014) to predict because of its declaratively remarkable pre-

diction performance and reasonable speed. As reported, it achieved

accuracies of 92.9% for secondary structure prediction and 90% for

relative solvent accessibility prediction by combining sequence simi-

larity and sequence-based structural similarity. As described in

Figure 2, SSpro output the secondary structure in the form of H (rep-

resenting helix), E (representing strand) and C (representing the rest)

for each amino acid along the sequence. In a similar way, ACCpro

exported ‘e’ for the exposed residues and ‘-’ for the buried represent-

ing predictive solvent accessibility. Using the encoding method and

classification of amino acids described above, we finally constructed

a 21 dimensional vector representing the physicochemical properties

of hydrophobicity, normalized van der Waals volume, polarity,

polarizability, predicted secondary structure and 7 for solvent acces-

sibility, respectively.

For charge and polarity of side chain in protein-RNA interaction,

we followed the conjoint triad encoding strategy, used for protein-

RNA interaction prediction (Wang et al., 2013), which was firstly

proposed for protein-protein interaction prediction (Shen et al.,

2007). Twenty amino acids were grouped into 4 classes, which are

acidic [DE], basic [HRK], polar [CGNQSTY] and non-polar

[AFILMPVW] (Cheng et al., 2008; Wang et al., 2013; Yu et al.,

2006). Three successive amino acids were treated as a unit and the dif-

ferent amino acids belonging to the same type were treated as the

same. Using conjoint triad method to encode the four types of amino

acids, we obtained a 4 * 4 * 4¼64 dimensional vector representing

each protein sequence. Each value in the 64 dimensional vector was

the normalized probability of a specific triad along the sequence.

2.2.2 Evolutionary information

In RNApred method, evolutionary information in the form of pos-

ition specific scoring matrix (PSSM) was firstly used for predicting

RNA-binding proteins with a maximum MCC of 0.62 (Kumar

et al., 2011). The PSSM profile was generated for each protein se-

quence using PSI-BLAST to search the NR (non-redundant) protein

database using three iterations with e-value threshold of 0.001 for

inclusion of sequences during constructing profiles. The probability

of each of 20 amino acids at each position of a query protein se-

quence is an essential part of the PSSM profile.

In our study, we performed PSSM constructing by using PSI-

BLAST (Altschul et al., 1997) (BLAST 2.2.30þ released) to search the

NCBI-NR90 database with three iterations and e-value threshold of

0.001 for saving hits. The other parameters for PSI-BLAST searching

were as default. NR90 database is a representative subset of the NR

database, which was derived by using CD-HIT (Li and Godzik, 2006)

with sequence identity of 90% to remove the homologous protein se-

quences from NR database. Because it took much less computational

time and achieved only slightly poorer performance than the NR data-

base, NR90 was used to execute the PSI-BLAST search (Ahmad and

Sarai, 2005; Carson et al., 2010; Si et al., 2009).

Then, we obtained the normalized PSSM by using formula 1/

(1þ ê (-x)), where x is the value in the PSSM. In order to convert the

L * 20 PSSM profile (L is the number of amino acids in the query

protein sequence) into a fixed dimension, we adopted the strategy

used by Kumar et al. for DNA- and RNA-binding proteins predic-

tion. Firstly, for each column, the values belonging to the same

amino acid in all rows were summed to form a vector of 20 dimen-

sion. Secondly, 20 vectors were combined together to form a 20 *

20¼400 dimensional vector (Kumar et al., 2007, 2011).

2.3 SVM classifier
The support vector machine (SVM) method was used for processing

classification and regression problems. In the study, LIBSVM-3.17

package (Chang and Lin, 2011) was used as a stand-alone program

to train the model and perform RBP prediction using the radial basis

function (RBF) kernel. The optimal values of tunable parameter C

and c were determined by the grid search method and

C¼185363.800047, c¼0.000690533966002 were obtained for

the training set with the selecting top 300 features of the vectors

using 20 CPUs in about 13 hours.

2.4 Performance evaluation
The performance of RBPPred was measured by the ten-fold cross-

validation approach. To perform this cross-validation, the training

set was randomly divided into ten parts of equal size. For each

cross-validation, the nine parts were combined as the sub-training

set while the remaining one part was used as the sub-testing set for

testing. This process was repeated ten times to ensure each part was

once used as the sub-testing set. We evaluated the average perform-

ance of all the ten sub-testing sets by using sensitivity (SN), specifi-

city (SP), precision (PRE), accuracy (ACC), F-measure and

Matthews correlation coefficient (MCC), which are defined as:

Sensitivity ðSNÞ ¼ TP=ðTPþ FNÞ

Specificity ðSPÞ ¼ TN=ðTNþ FPÞ

Precision ðPREÞ ¼ TP=ðTPþ FPÞ

Accuracy ðACCÞ ¼ ðTPþ TNÞ=ðTPþ FNþ TNþ FPÞ

F�measure ¼ ð2�PRE�SNÞ=ðPREþ SNÞ

Matthews Correlation Coefficient (MCC)

¼ ðTP�TN

� FP�FNÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FNð Þ� TPþ FPð Þ� TNþ FPð Þ�ðTNþ FNÞ

p

where, TP refers to true positive, FN, TN, FP represents false nega-

tive, true negative and false positive respectively. MCC gives an
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overall measurement of the performance while SN (or SP) assesses

the correct prediction rate in the positive (or negative) set. Another

objective evaluation index AUC used here is the area under the re-

ceiver operation characteristic (ROC) curve.

3 Results

In this work, we proposed a sequence-based approach named

RBPPred for RNA-binding proteins prediction. To perform the

RBPs prediction, we extracted important features from each protein

sequence, including 5 physicochemical properties, predicted second-

ary structure information, predicted relative solvent accessibility

and the evolutionary information. SVM was trained using the

encoded features to present the model for prediction. We also

applied our method to proteomes, and compared it with previous

approaches.

3.1 Performance of RBPPred on the training set using

10-fold cross-validation
The performance of RBPPred was measured using 10-fold cross-

validation, by a number of indicators (SN, SP, PRE, ACC, F-meas-

ure, AUC and MCC). Our RBPPred successfully predicted RBPs

using 10-fold cross-validation on 2780 RNA-binding, 7093 non-

binding proteins, and the best performance was achieved with the

average SN of 82.77%, SP of 96.50%, F-measure of 0.863, AUC of

0.975 and MCC of 0.814 by all the eight properties combined, as

listed in Table 2. We also compared the contribution of individual

property to the prediction and observed that MCC ranged from

0.464 to 0.754, suggesting the difference in the prediction ability of

each feature group. In all of the single properties, the prediction abil-

ity of evolutionary information was the best, with the highest SN,

AUC and MCC values of 74.67%, 0.946 and 0.754, respectively.

However, not all the single property we have chosen performed

well for RBP prediction, some of which gave poor prediction results.

In addition, the generated features may be redundant with each

other. Therefore, we employed feature selection method to remove

the redundancy among the eight properties and picked out the top

ranked features according to their predictive contribution. mRMR

algorithm was proposed by Peng et al. for selecting good features in

pattern classification system based on mutual information with the

minimal redundancy, maximal relevance criteria (Peng et al., 2005).

The program ranks each feature with the corresponding mRMR

score and the higher score represents the stronger prediction ability

of the feature.

We chose mRMR to filter the top 100, 200 and 300 important

features from the total 576 features encoded from the 2780 RBPs

and 7093 non-RBPs in the whole training set. The selected features

and the number of them in each feature group were listed in

Supplementary Table S1 and S2 (See Supplemental Material). It can

be seen that the selected features covered the eight feature groups

which demonstrates that the encoded features are helpful to the pre-

diction of RNA-binding proteins. Particularly, the evolutionary in-

formation generated by PSI-BLAST occupied the largest number in

the selected top 100, 200 and 300 features, which proved its signifi-

cant role in RNA-binding proteins prediction. The second largest

proportion is charge and polarity of side chain, with selected 34, 22

and 10 features among the top 300, 200 and 100 features, respect-

ively. The number of features picked out from polarity and hydro-

phobicity properties was more than from the other three properties

with 21 dimensionality. For relative solvent accessibility, 5 features

were retained in the three types of feature selection. Among the se-

lected features, the firstly ranked was the feature from evolutionary

information, followed by the features from secondary structure and

from polarity. Seventeen features were selected from the evolution-

ary information among the top 30 features listed in Supplementary

Table S2.

We applied the selected top 100, 200, 300 features from the en-

tire training set to each subset. Only the selected features were

encoded for each subset of the training set to conduct the ten-fold

cross-validation. The prediction performance by taking different

number of features were summarized in Table 3. As is shown, the

top 300 features gave the best results with the average SN of

83.07%, SP of 96%, AUC of 0.975 and MCC of 0.808, which were

chosen to create the final model.

Table 2. Comparison between predictive abilities of individual feature group and the performance of RBPPred (all features combined) on

2780 RBPs and 7093 non-RBPs

Feature group SN (%) SP (%) PRE (%) ACC (%) F-measure AUC MCC

Evolutionary information (PSSM) 74.67 6 2.93 96.45 6 1.19 89.20 6 3.56 90.32 6 1.16 0.812 6 0.023 0.946 6 0.007 0.754 6 0.029

Polarizability (Pz) 65.08 6 2.42 92.68 6 0.79 77.56 6 3.46 84.93 6 0.75 0.708 6 0.026 0.904 6 0.005 0.611 6 0.029

Hydrophobicity (Hb) 57.96 6 2.71 95.51 6 0.79 83.52 6 2.24 84.93 6 1.48 0.684 6 0.022 0.917 6 0.006 0.606 6 0.027

Van der Waals volume (VDWV) 59.82 6 3.05 93.99 6 0.90 79.47 6 3.70 84.37 6 1.12 0.682 6 0.028 0.903 6 0.008 0.592 6 0.033

Polarity (Pl) 55.17 6 3.78 95.66 6 0.67 83.23 6 2.55 84.26 6 1.22 0.663 6 0.029 0.912 6 0.009 0.586 6 0.028

Relative solvent accessibility (RSA) 39.96 6 3.79 98.60 6 0.71 91.86 6 3.70 82.08 6 1.35 0.556 6 0.035 0.796 6 0.008 0.528 6 0.026

Secondary structure (SS) 44.60 6 3.89 96.92 6 0.87 85.01 6 3.84 82.17 6 1.46 0.584 6 0.033 0.825 6 0.023 0.526 6 0.032

Charge and polarity of side

chain (CPSA)

42.14 6 4.60 95.10 6 0.69 77.08 6 2.09 80.23 6 1.20 0.544 6 0.039 0.861 6 0.011 0.464 6 0.031

All features (RBPPred) 82.77 6 1.65 96.50 6 0.80 90.18 6 2.50 92.64 6 0.61 0.863 6 0.016 0.975 6 0.003 0.814 6 0.019

*The results were calculated by using 10-fold cross-validation and the values were listed in the form of the average 6 the standard deviation.

Table 3. The performance of prediction models by employing

mRMR-based feature selection method on 2780 RBPs and 7093

non-RBPs

Model Top 100 Top 200 Top 300

SN (%) 77.97 6 1.97 80.97 6 2.19 83.07 6 2.13

SP (%) 96.39 6 0.40 96.17 6 0.69 96.00 6 0.80

PRE (%) 89.38 6 1.43 89.15 6 2.41 89.00 6 2.61

ACC (%) 91.23 6 0.59 91.90 6 0.81 92.36 6 0.75

F-measure 0.833 6 0.016 0.848 6 0.019 0.859 6 0.018

AUC 0.965 6 0.003 0.970 6 0.004 0.975 6 0.003

MCC 0.777 6 0.018 0.795 6 0.023 0.808 6 0.022
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3.2 Performance of RBPPred on independent datasets
RBPPred was tested on three independent datasets from human, S.

cerevisiae and A. thaliana species respectively. The whole training

set, which containing 2780 RBPs and 7093 non-RBPs was used to

construct the model. As shown in Table 4, RBPPred achieved excel-

lent performance with a best MCC of 0.788, sensitivity of 84.28%

and specificity of 96.65% for 967 RBPs and 597 non-RBPs for

human. Moreover, for the whole 1551 RBPs in human proteome

with GO annotation of RNA binding from UniProt, RBPPred suc-

cessfully predicted 84.28%, which performed much better than

SPOT-seq (42.6% reported) (Zhao et al., 2014). Likely, prediction

results were obtained for the other two testing sets, with sensitivities

of 86.16% and 86.40%, specificities of 91.85% and 94.59%,

MCCs of 0.729 and 0.537 for S. cerevisiae (354 RBPs and 135 non-

redundant non-RBPs) and A. thaliana species (456 RBPs and 37

non-redundant non-RBPs).

Supplementary Table S3 was presented to analyze which classes

of RNA binding proteins were not predicted well by RBPPred for

the independent datasets by cross-referencing the predictions against

the PFAM database (Finn et al., 2016). The RNA-binding proteins

from three independent datasets were analyzed to find the Pfam

families they belonging to. The number of proteins in the families

from the above RBPs set and the proportion of families which were

incorrectly predicted were presented in Supplementary Table S3.

The results showed that for the larger families, such as PF00076.20,

PF00271.29 and PF00270.27, 97% of 488 PF00076.20, 95% of

143 PF00271.29 and 95% of 141 PF00270.27 families were cor-

rectly predicted by RBPPred. For the small families which have num-

ber of proteins less than or equal to 10 from independent sets, our

method also achieved high success rate with 79% of 1482 small

families being completely predicted successfully and only 13% of

these small families were completely wrongly predicted. Especially,

PF04857.18, PF13041.4 and PF00191.18 families were poorly pre-

dicted with the error rates of 96%, 67% and 67%, respectively.

3.3 Application of RBPPred to human RBPs census
Recently, a census of 1542 RBPs in human proteome (Gerstberger

et al., 2014) are extracted from Pfam database (Finn et al., 2010)

starting from protein domains, which were tested to verify our

method. The whole RBPs were classified to two groups, experimen-

tally validated and computationally recognized RBPs. Our method

achieved better performance on the experimentally validated RBPs

which have experiment evidence of binding RNAs.

Firstly, we classified these proteins identified by Baltz et al.

(2012), Castello et al. (2012) or included in RBPDB (Cook et al.,

2011) as experimentally validated RBPs and the others in the list of

1542 RBPs as computationally recognized RBPs. From the analysis

of 1542 proteins ids extracted form Gerstberger et al. we find that

there are 8 different protein ids only corresponding to 4 unique pro-

tein sequences. In this situation, only one protein id was kept in the

set. This generated the whole set of 1538 RBPs. Finally, 916 RBPs

with experimentally evidence of interacting with RNAs and 622

computationally recognized RBPs were included in the testing set.

Table 5 listed the prediction results of RBPPred on the census of

1538 human RBPs (Gerstberger-1538) and 1284 RBPs where the

identical sequences with the training set were removed (Gerstberger-

1284). As shown, 81% RBPs were successfully predicted for 916 ex-

perimentally validated RBPs, and the sensitivity declined much with

the success rate of 58% for 622 computationally recognized RBPs.

In addition, the success rate was consistently slightly dropped when

sequences included in the training set were removed (for example,

from 72% to 68%).

Furthermore, we have compared the data from our independent

testing set of human species with the 1538 RBPs from a census of

human RBPs by Gerstberger et al. in Figure 3. There are 705 RBPs

present both in the positive samples of 1551 RBPs reviewed from

UniProt and the collection of 1538 putative RBPs from the census of

human RBPs. Among the 705 common RBPs identified, 81.42%

were correctly identified by our method. However, 213 proteins

identified as RBPs by Gerstberger et al. belongs to the set of 9647

unlabeled human proteins which have no direct evidence of binding

an RNA and still 66.20% of them were predicted as RBPs by

RBPPred. Last, the rest of 620 proteins only appearing in the census

Table 4. Performance on the RBPs and negative samples from PDB

for three proteomes

Dataset Human S. cerevisiae A. thaliana

SN (%) 84.28 86.16 86.40

SP (%) 96.65 91.85 94.59

PRE (%) 97.60 96.52 94.59

ACC (%) 89.00 87.73 87.02

F-measure 0.905 0.910 0.925

MCC 0.788 0.729 0.537

*Human dataset is the combination of 597 non-RBPs from PISCES with

25% sequence identity and the 967 RBPs without elimination of redundancy

from the human proteome, as described in the section ‘Datasets’; S. cerevisiae

dataset is the combination of 135 non-RBPs with 25% sequence identity from

PISCES and the 354 RBPs without elimination of redundancy from the S. cer-

evisiae proteome, as described in the section ‘Datasets’; A. thaliana dataset is

the combination of 37 non-RBPs from PISCES with 25% sequence identity

and the 456 RBPs without elimination of redundancy from the A. thaliana

proteome, as described in the section ‘Datasets’.

Fig. 3. Comparison of 1538 RBPs from a census of human RBPs by

Gerstberger et al. with the 1551 RBPs and 9647 unlabeled proteins with se-

quence identity of 25% reviewed from UniProt

Table 5. Prediction results of 1538 human RBPs from work of

Gerstberger et al.

Dataset SN

Gerstberger-1538 Total (1538) 0.72

Experimental (916) 0.81

Computational (622) 0.58

Gerstberger-1284 Total (1284) 0.68

Experimental (718) 0.78

Computational (566) 0.56
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as RBPs but absent in our set were predicted as binding with per-

centage of 62.58.

3.4 Capacity of forecasting new RBPs and comparison

with existing approaches
To further evaluate our method, we tested its ability of predicting

novel RBPs and made comparisons with other methods on different

sets. The results show that our method RBPPred performed much

better than SPOT-seq and RNApred.

As we summarized in Table 1, there are several methods de-

veloped for RNA-binding proteins prediction but only two

sequence-based methods can be accessed (Kumar et al., 2011; Zhao

et al., 2011a,b), either through a web server or code was public for

downloading. In this research, RNApred was compared in the mod-

ule of amino acid composition, which was the only supported pre-

diction module on its web server now. The other two prediction

modules of PSSM profile and hybrid prediction could not produce

results in tolerable time on the web.

As time goes on, some new RBPs were identified or annotated.

We collected the proteins annotated with the function of binding

RNAs between June 9, 2015 and April 13, 2016 as new RBPs. Using

the term ‘GO:0003723’ to search the UniProt database, we reviewed

31 new RBPs of human, 49 new RBPs of S. cerevisiae and 65 of A.

thaliana proteomes. Apply our method RBPPred and the other two

methods to the newly annotated RBPs, we compared the number of

RBPs which are correctly predicted as binding. From Table 6 we can

see that our method RBPPred achieved much better performance

than SPOT-seq. RBPPred correctly identified 25 out of 31 novel

human RBPs. Furthermore, 43 in 49 newly recognized RBPs from S.

cerevisiae and 57 amongst 65 recently annotated RBPs from A.

thaliana proteomes are also predicted successfully. But for the new

RBPs of human and A. thaliana, our method RBPPred performed lit-

tle worse than RNApred. However, as can be seen from Table 7,

RNApred achieved prediction results with much high false positive

rate. The detailed information of the newly annotated RBPs of the

three proteomes, including RNA binding type, evidence for RNA

binding were described in Supplementary Table S4.

In order to compare effectively, the three methods were tested on

the independent testing sets from human, S. cerevisiae and A. thali-

ana proteome, including both the positive and negative data. The

prediction results of human testing set, which consisting 967 posi-

tive and 597 negative samples, were listed in Table 7. RBPPred per-

formed much better than SPOT-seq and RNApred, with accuracy of

89% versus 57% and 71%, MCC of 0.788 versus 0.330 and 0.366

on the human set. The prediction results of the other two testing sets

(See Supplemental Material) further strengthened the better per-

formance of RBPPred than the other two methods with MCC of

0.729 versus 0.312 and 0.446 for S. cerevisiae (Supplementary

Table S5), and MCC of 0.537 versus 0.312 and 0.162 for A. thali-

ana (Supplementary Table S6), respectively.

From the above comparison of results, it seems that RNApred

and SPOT-seq tend to achieve high performance on one data type

(positive or negative). RNApred achieved high sensitivity for the

positive data but low specificity for the negative data while SPOT-

seq achieved low sensitivity for the positive data but high specificity

for the negative data. In contract, our method RBPPred can strike a

balance between the two kinds of data with both high sensitivity

and specificity.

3.5 Discussion
RNA-binding proteins play important and various roles in cells and

biological processes. Some experimental technologies and calcula-

tion methods were developed and used to detect or predict the inter-

actions of a protein and RNA. Overall, the computational methods

can be divided into three levels: the prediction of RBPs, the predic-

tion of binding sites in the protein or RNA sequence (Carson et al.,

2010; Choi and Han, 2013; El-Manzalawy et al., 2016; Kumar

et al., 2008; Liu et al., 2010; Livi et al., 2016; Miao and Westhof,

2015; Muppirala et al., 2016; Sun et al., 2016; Walia et al., 2012,

2014; Wu and Zhou, 2013; Yang et al., 2014), the prediction of

protein-RNA pairs (Agostini et al., 2013; Akbaripour-Elahabad

et al., 2016; Bellucci et al., 2011; Cheng et al., 2015; Lu et al., 2013;

Muppirala et al., 2011; Suresh et al., 2015). Relative to the other

two kinds of prediction, the available approaches of RBPs prediction

are much less. In this work, we proposed a new SVM-based pre-

dictor RBPPred for RBPs prediction by integrating the features used

in previous works, which have some improvement in prediction

performance.

From the performance we can see, the evolutionary features have

a major impact on the SVM performance. To illustrate the universal-

ity of our training set and the possible bias of the data between the

training set and the three testing species, we turned back to analyze

the species composition of the proteins in the training set (See

Supplemental Material). The analysis showed that the 2780 RBPs

and 7093 non-RBPs came from hundreds of organisms and the top

nine organisms were listed in Supplementary Table S7 and S8. The

proteins of human, S. cerevisiae and A. thaliana only occupied 20%,

7%, 5% for the 2780 RBPs and 16%, 4% and 1% for 7093 non-

RBPs of the training set, respectively. Besides from the proteins of

the three testing species, the great majority of proteins in the training

set were from other species. However, since the limited number of

available RBPs in the three testing sets, only the identical proteins

(rather than redundancy proteins) with training set were removed

from testing sets, which may lead to some bias of the data between

the training and testing sets.

In the application to human proteome, 9615 non-redundant pro-

teins with sequence identity cutoff of 25% were reviewed after

removing those RBPs from human proteome. RBPPred only pre-

dicted 31% of them as non-RBPs and forecasted the rest may have

the potential of binding RNAs with a probability score from 0.5 to

1. The protein list contains 6657 possible RBPs with the probability

score cutoff of 0.5 (Supplementary Table S9). For each of the pro-

teins, we specified its known functions and prediction probability

score. Predicted probability score is the predicted probability value

Table 6. The number of new RBPs that was correctly predicted by

RNApred, SPOT-seq and RBPPred for human, S. cerevisiae and A.

thaliana species

Organism Number of new RBPs RNApred SPOT-seq RBPPred

Human 31 28 10 25

S. cerevisiae 49 42 19 43

A. thaliana 65 65 23 57

Table 7. Method comparison for RNA-binding proteins prediction

on human testing set

Method SN (%) SP (%) PRE (%) ACC (%) F-measure MCC

RNApred 88.52 43.55 71.75 71.36 0.793 0.366

SPOT-seq 34.54 94.30 90.76 57.35 0.500 0.330

RBPPred 84.28 96.65 97.60 89.00 0.905 0.788
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between 0 and 1 of a protein potentially to be a RBP; the higher the

value is, the greater the probability to be a new RBP. In the table,

we further marked those proteins simultaneously predicted as RBPs

by SPOT-seq, a total of 1134 proteins. The results show that there

are many possibly potential RBPs waiting to be discovered.
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